Subspace Clustering - 用稀疏子空间聚类做运动分割

Subspace Clustering - 用稀疏子空间聚类做运动分割

Jun 4, 2015. | By: QU Xiaofeng

用子空间聚类算法来做运动分割,其中稀疏表示和低秩表示聚类比较多。

State-of-art 方法:

SSC (Sparse Subspace Clustering)

LRR (Low-Rank Representation)

刚性的 motion segmentation 基本上用 subspace clustering 解决,效果就挺好了。因为同一个刚性目标基本上可以看成是采样在同一个子空间中。如果是非刚性的话可能效果就不是特别好。

RSSC (Reweighted Sparse Subspace Clustering)

非刚性的 motion segmentation

Table 1. Clustering error (%) of the state-of-the-art algorithms and our proposed RSSC algorithm on the Hopkins 155 dataset with the 2F-dimensional data points. The lowest mean and median clustering errors are highlighted in bold.

No. of motion Algorithm LSR1 LSR2 SMR LRR SSC RSSC
2 Motions Mean 2.16 2.47 0.88 2.13 1.53 0.64
(120 seqs) Median 0.11 0.001 0.00 0.00 0.00 0.00
3 Motions Mean 5.76 6.23 1.92 4.03 4.40 2.01
(35 seqs) Median 1.60 1.63 0.58 1.43 0.56 0.56
All Mean 2.97 3.32 1.12 2.56 2.18 0.95
(155 seqs) Median 0.28 0.28 0.00 0.00 0.00 0.00

Table 2. Clustering error (%) of the state-of-the-art algorithms and our proposed RSSC algorithm on the Hopkins 155 dataset with the 4n-dimensional data points obtained by applying PCA. The lowest mean and median clustering errors are highlighted in bold.

No. of motion Algorithm LSR1 LSR2 SMR LRR SSC RSSC
2 Motions Mean 2.46 2.73 1.04 3.64 1.69 0.83
(120 seqs) Median 0.22 0.22 0.00 0.00 0.00 0.00
3 Motions Mean 5.77 6.21 1.96 4.17 4.38 2.50
(35 seqs) Median 1.60 1.83 0.58 1.43 0.56 0.37
All Mean 3.20 3.52 1.25 3.76 2.29 1.21
(155 seqs) Median 0.37 0.37 0.00 0.00 0.00 0.00

Table 3. The comparement of computation time (s) of different algorithms on Hopkins155 dataset with the 2F-dimensional data points. The computation time is recorded in two stages. One is the average computation time of solving the representation or affinity matrix (Repres.), the other is the average computation time of the spectral clustering stage (Spectr.). The lowest time for solving the representation matrix are highlighted in bold.

No. of motion Algorithm LSR1 LSR2 SMR LRR SSC RSSC
2 Motions Repres. 0.006 0.003 0.108 0.865 0.465 0.813
(120 seqs) Spectr. 0.019 0.021 0.093 0.049 0.053 0.047
3 Motions Repre. 0.013 0.008 0.256 1.214 0.968 1.740
(35 seqs) Spectr. 0.036 0.039 0.162 0.096 0.098 0.094

Table 5. Clustering error (%) of the state-of-the-art algorithms and our proposed RSSC algorithm on the Freiburg-Berkeley Motion Segmentation dataset with the 2F-dimensional data points. The dataset is divided into two parts: rigid motions and non-rigid motions. The lowest mean and median clustering errors are highlighted in bold.

Type of motion Algorithm LSR1 LSR2 LSA SCC SMR LRR SSC RSSC
Rigid Mean 0.59 0.59 5.4 2.56 1.44 3.14 1.31 1.2
(22 seqs) Median 0 0 0 0 0 0 0 0
Non-rigid Mean 7.88 7.87 18.01 7.22 11.09 10.97 8.61 7.45
(115 seqs) Median 0.38 0.38 12 0.5 3.25 0 0 0
All Mean 6.71 6.7 15.98 6.47 9.54 9.72 7.45 6.44
(137 seqs) Median 0 0 8.25 0.25 1 0 0 0

Table 6. Clustering error (%) of the state-of-the-art algorithms and our proposed RSSC algorithm on the Freiburg-Berkeley Motion Segmentation dataset with the 4n-dimensional data points obtained by applying PCA. The dataset is divided into two parts: rigid motions and non-rigid motions. The lowest mean and median clustering errors are highlighted in bold.

Type of motion Algorithm LSR1 LSR2 LSA SCC SMR LRR SSC RSSC
Rigid Mean 0.57 0.57 5.4 2.5 1.44 3.09 1.31 1.24
(22 seqs) Median 0 0 0 0 0 0 0 0
Non-rigid Mean 7.59 7.6 16.98 7.29 12.07 10.53 8.78 6.68
(115 seqs) Median 0.36 0.36 9.5 0.5 3.89 0.25 0 0
All Mean 6.47 6.47 16.05 6.52 10.37 9.34 7.58 5.81
(137 seqs) Median 0 0 8.5 0.25 1.75 0 0 0

Table 9. Clustering error (%) of our algorithm and the SSC algorithm on the Extended Yale B dataset. The lowest mean and median clustering errors are highlighted in bold.

No. of subject Algorithm LSR1 LSR2 SMR LRR SSC RSSC
2 Subjects Mean 7.34 7.35 1.75 2.13 1.85 0.57
(163 combinations) Median 7.03 7.03 0.78 0.78 0 0
3 Subjects Mean 10.06 9.92 3.03 3.5 3.3 1.09
(416 combinations) Median 10.42 10.42 2.08 2.08 1.04 0
4 Subjects Mean 13.96 13.66 3.25 4.86 3.81 1.65
(700 combinations) Median 14.45 14.06 2.34 3.91 1.95 0.39
5 Subjects Mean 17.99 17.57 3.91 5.91 4.33 2.21
(812 combinations) Median 18.13 17.81 2.5 5 2.81 0.62
6 Subjects Mean 21.57 20.95 5.28 6.83 4.83 2.79
(658 combinations) Median 21.61 21.09 2.86 5.99 3.39 1.3
7 Subjects Mean 25.15 24.32 6.38 7.75 5.42 3.43
(368 combinations) Median 25 24.11 3.13 7.14 4.46 1.79
8 Subjects Mean 28.91 27.52 6.83 11.05 5.88 3.97
(136 combinations) Median 29.69 27.83 3.71 7.42 4.49 1.86
9 Subjects Mean 32.37 31 7.14 10.32 6.44 4.57
(30 combinations) Median 32.73 31.42 4.51 7.81 4.95 2.69
10 Subjects Mean 36.46 33.49 7.81 16.93 7.24 4.79
(3 combinations) Median 36.09 32.81 7.03 18.91 5.47 3.28

Subscribe

Subscribe to new methods via RSS.

Categories

Vision 3

Clustering 3

Metric-learning 1

Recent Posts

Popular Tags

Vision (3) Clustering (3) Metric-learning (1)

About

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s.

Social Links

Our Bunker

PQ702, Department of Computing, The Hong Kong Polytechnic University,
11 Yuk Choi Road, Hung Hom, Kowloon,
Hong Kong SAR, China